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We study the response of probe particles to weak constant driving in kinetically constrained models of glassy
systems, and show that the probe’s response can be nonmonotonic and give rise to negative differential
mobility: increasing the applied force can reduce the probe’s drift velocity in the force direction. Other
significant nonlinear effects are also demonstrated, such as the enhancement with increasing force of the
probe’s fluctuations away from the average path, a phenomenon known in other contexts as giant diffusivity.
We show that these results can be explained analytically by a continuous-time random walk approximation
where there is decoupling between persistence and exchange times for local displacements of the probe. This
decoupling is due to dynamic heterogeneity in the glassy system, which also leads to bimodal distributions of
probe particle displacements. We discuss the relevance of our results to experiments.
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I. INTRODUCTION

Dynamic heterogeneity manifests complex correlated
atomic motions in structural glass forming systems �1�. It is a
ubiquitous feature that gives rise to a variety of behaviors
peculiar to glassy dynamics. In this paper, we consider phe-
nomena associated with one such behavior—the negative re-
sponse of a particle’s velocity to an applied force. Earlier
experiments and computer simulations have studied how par-
ticles in glass forming systems respond to external forces
�2–6�. A range of effects have been found, including the
appearance of a threshold force �2� and nonlinear velocity or
force relations �2,3�, the vanishing of the linear response re-
gime at low temperatures �4�, the self-organization of forced
particles �5�, and a negative response to chemical potential
gradients �6�. Here, we study the response of a probe particle
�7� to a weak external force with numerical simulations and
with analytic methods. The numerical work employs kineti-
cally constrained models of glass formers �8,9�. The analyti-
cal work employs a continuous time random walk model
�10�, specifically the model �11� introduced to treat effects
due to decoupling between persistence and exchange pro-
cesses �7,12�. While originally constructed in the context of
kinetically constrained lattice models, essential features of
dynamics that justify this analytical model have been dem-
onstrated in atomistic models of glass formers �13–15�.

Experimental context for our results is shown in Fig. 1:
we compare results from one of our model systems with
results for a colloidal system near to its glass transition. In
order to make contact between model systems and experi-
ments, we plot the probe velocity v and the applied force F
in dimensionless units. The velocity is normalized by v0
= �D /��, where � is the particle diameter, and D is the dif-
fusion constant of the probe in the absence of the externally
applied force. The reduced velocity �v� /v0 is proportional to
the “modified Péclet number” of Ref. �2�. The reduced force
is f= �F� /kBT�, where T is the temperature and kB is Boltz-
mann’s constant. In these units, the linear response formula
for the probe velocity is Einstein’s relation for small forces,

v=v0f �16�. Estimating these reduced quantities using data
from Refs. �2,17,18�, we sketch the force-velocity relation-
ship for the colloidal system in Fig. 1, where v= �v� and f
= �f�.

The experimental data of Ref. �2� has several important
features. The most striking is the so-called threshold force,
above which the velocity increases rapidly with applied
force. On the other hand, for small enough forces, the Ein-
stein relation must apply, although experimental constraints
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FIG. 1. Experimental context. We plot force-velocity relation-
ships in rescaled units, identifying three regimes, as discussed in the
main text. The linear response �Einstein� relation v=v0f is repre-
sented by the dashed line. At small forces, the predictions of linear
response apply. At large forces, the experimental system exhibits a
threshold force that represents the limit of applicability of the tri-
angular lattice gas �TLG� model. In the intermediate force regime,
both the experimental and TLG velocities are much smaller than
those predicted by linear response, and the response in the TLG
model is nonmonotonic. The experimental curve shows the behav-
ior observed in the colloidal fluid of Ref. �2�: we plot the fitting
function v=vt��F /Ft�−1�� used in �2�, with Ft=0.6 pN, vt=2
�10−1 �m s−1, and �=2.5. For the experimental data, a reduced
force of unity corresponds to �kBT /�probe��1 fN, and v0= �D /��
�10−5 �m s−1. The data for the TLG model was obtained at filling
fraction �=0.6.
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meant that this regime was not accessible in Ref. �2�. Inter-
estingly, for the experimentally accessible forces below the
threshold, the velocity is much smaller than the prediction of
linear response: in fact, it was smaller than the experimental
resolution limit. We can therefore identify a regime of inter-
mediate force, where the force is much smaller than the
threshold, and the response is much smaller than that pre-
dicted by the Einstein relation.

According to our theoretical predictions, this regime,
which has not yet been investigated experimentally, exhibits
new and interesting phenomenology. Figure 1 illustrates our
predictions by showing results from our simulations of a
kinetically constrained model �details are given below�. At
small forces, the Einstein relation is obeyed, while the re-
sponse saturates at larger forces. This saturation represents a
nonlinear response that is consistent with the small sub-
threshold responses observed in Ref. �2�. Our use of kineti-
cally constrained models to describe the colloidal fluid rests
on the assumption that glassy behavior occurs when the mo-
tion of particles is constrained by their neighbors. We will
see that saturation of the subthreshold responses is a natural
consequence of this assumption. However, it is clear from
Fig. 1 that the triangular lattice gas �TLG� model does not
reflect the experimental observation of a threshold force. Our
interpretation of the experimental data is that, as the applied
force is increased through the threshold, the force on the
probe particle becomes stronger than the constraint forces
imposed by its neighbors. As a result, the structure of the
colloidal fluid is disrupted by the forced probe. Thus the
threshold force represents the limit of applicability of the
kinetically constrained model �19�. For this reason, we con-
centrate in this paper on the regime of intermediate forces,
where the kinetically constrained model should be appli-
cable. In this regime, we find a surprising effect: increasing
the applied force reduces the velocity of the pulled particle.
This phenomenon and associated results are the focus of this
paper.

II. MODELS AND PARTICLE DRIVING PROTOCOLS

We begin by describing the models we use in numerical
simulations. Two are “particle” models, in the sense that the
material in which the probe moves is described in terms of
particles on a lattice with specified dynamical rules. The
other is a “field” model, in the sense that the material is
described in terms of a so-called “mobility” field. The value
of that field at a point on the lattice specifies whether or not
motion is possible at that point. The specific field model is
one of many possibilities, each representing a coarse grained
approximation to a particle model �20�. The continuous-time
random walk model �11� used later in this paper describes
the coupling of the mobility field to particle motion.

A. Particle models

We consider a two-dimensional �i.e., square� version of
Kob and Andersen’s �KA� lattice model �21,22�, and the
closely related triangular lattice gas �TLG� model of Jäckle
and Krönig �23,24�. These constrained lattice gases are as-

sumed to capture effects of local jamming in a supercooled
liquid. They have only excluded volume interactions, so, for
a given filling fraction �, all allowed configurations are
equally likely. They exhibit nontrivial effects of correlated
dynamics at filling fractions ��0.5. Dynamical heterogene-
ity is manifested as a clustering of mobile particles, and dif-
ferent transport properties decouple from one another �for
example, the translation diffusion coefficient does not scale
inversely with the structural relaxation time �24��. These ef-
fects arise from constraints on the dynamics.

For the KA model �21,22�, specifically the �2,2� variant,
particles live on a square lattice, with zero or single occu-
pancy of lattice sites, and a particle may move to adjacent
vacant sites only if the particle is adjacent to two vacant sites
in both the initial and final sites. Similarly, for Jäckle and
Krönig’s TLG model, there is single or zero occupancy on a
triangular lattice, and a particle may move to vacant sites
only if both of the mutual nearest neighbors of the initial and
final sites are vacant. Accordingly, we refer to this model as
the �2�-TLG �24�. Its dynamical rules can be motivated on
physical grounds by associating hard cores to the particles,
the diameter of which is equal to the lattice spacing, and by
insisting that particles move along the lines connecting the
points on the lattice. From that picture, it is seen that the
dynamical rule is a straightforward steric effect—there is not
enough room for a particle to pass to an empty nearest neigh-
bor site unless the two common adjacent sites are also va-
cant.

In the absence of applied forces, all allowed processes
happen with rate �, which sets the fundamental unit of time.
We implement the dynamics using asynchronous Monte
Carlo updates.

In order to introduce a force F on a single “probe” par-
ticle, we first consider that particle in an empty lattice. It
would correspond to a single colloidal particle alone in a
solvent. In the absence of the applied force, this particle has
a bare diffusion constant ��2�z /2d�, where z is the coordi-
nation number of the lattice, and we identify the particle
diameter � with the lattice spacing. We denote the force-
dependent rates for translational moves of displacement 	R
by W�	R ,F�. We assume that these rates obey a local form
of detailed balance, W�	R ,F�=ef·	rW�−	R ,F�, where 	r
=	R /� is a reduced displacement. To ensure that an isolated
probe obeys the Einstein relation for all forces, we use the
rates

W�	R,F� = 2�
g�f · 	r�

1 + exp�− f · 	r�
, �1�

where the dimensionless function g�E� is given by

g�E� � E/�2 tanh�E/2�� . �2�

We have g�0�=1, so that W�	R ,0�=�. An alternative choice
would be to use Glauber dynamics �g�E�=1 for all E�, but in
that case, the Einstein relation applies only for small veloci-
ties, and there is an unphysical saturation at large forces.
This saturation is an artifact of using a lattice to describe
continuous space �25�: by using the rates of Eq. �1�, we en-
sure that the velocity of a single particle does not saturate.
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Hence, the saturating response that we do observe is a physi-
cal effect, which appears as the motion of the probe particle
becomes increasingly constrained by other particles in the
system. We have also checked that while the data presented
in this paper do depend quantitatively on the choice of g�E�,
their qualitative features are preserved if we instead use
Glauber dynamics. Thus, while there is some arbitrariness in
our use of Eq. �1�, we are confident that this choice does not
affect our main conclusions.

Throughout this paper, we consider a single probe in a
large system of unforced particles, ignoring the collective
behavior arising from interactions between forced particles
�5,6�, and the effect of finite current densities �6�. To enhance
statistics, we simulate large systems with a few probe par-
ticles in each, and we verify that our results are independent
of the number of probes. Due to the underlying lattice, our
models are not isotropic, so there is some dependence on the
direction of the force compared to the lattice axes �for ex-
ample, see �3��. However, we find that the results are quali-
tatively similar for all angles.

B. Mobility field model

We also consider the one-dimensional one spin facilitated
Fredrickson-Andersen �FA� model �8,26,27�. In this model
the local structure is described by a binary variable ni
� �0,1	. Sites with ni=1 are “mobile,” or excited: particles
in these regions are able to move; those with ni=0 are
“jammed,” so that motion is very unlikely. Sites may change
their state only if they are adjacent to a site with ni=1. In that
case they flip from 0 to 1 with rate c=e−
 and from 1 to 0
with rate unity �this choice sets the unit of time in this
model�, where 
 is a dimensionless inverse temperature. The
dynamics obey detailed balance, with an energy function E
=
ini, so the equilibrium state has no correlations between
sites. This model exhibits effects of nontrivial correlated dy-
namics for 
�1.

While the relaxation time of the FA model exhibits
Arrhenius temperature dependence �9�, in d=1 and at low
temperature, the model has significant fluctuation effects.
These are manifested by stretched exponential relaxation �9�
and transport decoupling �7�. Other kinetically constrained
models of mobility fields, such as the East model �9,28� ex-
hibit similar phenomenology in all dimensions, but the 1d
FA model is sufficient to capture the essential physical ef-
fects discussed in this paper �29�.

In Ref. �7�, probe particles were coupled to the FA model.
Probes were allowed to hop between adjacent sites only
when both initial and final sites were mobile. With this
choice, the dynamical rules for the ni do not depend on the
positions of the probe particle. While the forced probe is
affected by its environment, there is no mechanism for a
back reaction, where the effect of the force feeds back onto
the ni variables. Thus, an excitation in an FA model can pass
through this type of probe particle without any knowledge of
the probe’s presence. We therefore refer to the probes of Ref.
�7� as “ghost” probes.

For particle-based models, including the KCMs intro-
duced above, forced probe particles do have significant ef-

fects on their environment. For this reason we introduce an
alternative set of rules for probe particles in the FA model,
which allow us to model this back reaction. In particular,
since the presence of a probe reduces the available free vol-
ume, we imagine that its presence is sufficient to render the
site immobile. Thus, we modify the model of Ref. �7� by
assuming probes cannot occupy mobile sites. In this case, the
probe moves through the system by swapping places with
mobility excitations. If the probe position is x, then the al-
lowed moves are

�x = i,ni = 0,ni�1 = 1� → �x = i � 1,ni = 1,ni�1 = 0� .

Clearly, the dynamics of the FA model itself are now coupled
to those of the probes. We therefore refer to these as “fully
coupled probes.” The rates for attempted moves of both
coupled and ghost probes are given by Eq. �1�, with �
=1 /2.

III. FORCE DEPENDENCE OF THE PROBE VELOCITY

Negative differential mobility

The drift velocity of the probe is

v = lim
t→�

t−1�	rprobe�t�� , �3�

where 	rprobe�t� is the displacement of the probe in time t,
and the average is taken in the presence of the applied force.
In Fig. 2�a� we plot this velocity as a function of force in the
�2�-TLG and �2,2�-KA models, at densities above their on-
sets to cooperative dynamics. The linear response �i.e., Ein-
stein� relation is v= �D /��f, where D is the zero-force diffu-
sion constant,

D = lim
t→�

�2dt�−1��	rprobe�t��2� f=0. �4�

At densities above the onset, ��0.5, D is much smaller than
its bare value ��2�z /2d�. The striking result of negative re-
sponse, i.e., negative differential mobility, dv /df 0, is
found for f �2.

A similar effect is shown in Fig. 2�b� for the fully coupled
probes in the FA model. However, negative differential mo-
bility does not occur for the ghost probes. In that case, non-
linear effects only lead to a saturation of the drift velocity
with force �30�. In Fig. 3, we show how this response de-
pends on the temperature. Keeping the reduced force f fixed,
the velocity decreases monotonically as the temperature is
reduced. At high temperatures, the dependence on the force
is monotonic; negative differential mobility appears below
the onset temperature, 
�1. For these temperatures, the lin-
ear response �small force� regime is f �1, and negative dif-
ferential mobility is observed near f =1, below the onset tem-
perature.

The lack of nonmonotonic behavior for ghost particles
shown in Fig. 2�b� points to the mechanism for nonmono-
tonic behavior. We use Fig. 4 to illustrate the mechanism. In
particular, we show how applying a large force to a probe
particle can prevent the movement of neighboring particles
or mobility excitations. For example, Fig. 4�c� shows a con-
figuration in the �2�-TLG for which the probe can make
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progress in the direction of the force, but only if it first
moves backwards, allowing the neighboring particles to
move out of its way. In the FA model, Fig. 4�b� illustrates
how a single excitation may allow a single probe to make
several steps along the direction of the force �7�. However,
this process is suppressed at large forces, since it also in-
volves steps in which the probe moves against the force. At
large forces, most encounters between probe and excitation
are of the form shown in Fig. 4�a�, and the probe makes only
one step in each such encounter. In both cases, the forced
probe acts to suppress local relaxation, and the force acts to
slow down the motion of the probe particle.

The results of Ref. �6� for KA models show a nonmono-
tonic response similar to that of Fig. 2. In that case, all par-
ticles attain a finite drift velocity due to force gradients ap-
plied to many particles, and large scale density changes
result. The effects found in that work are related to those we
present here, but in contrast to Ref. �6�, the effect we con-
sider arises from forces on a single forced particle that pro-
duce no large scale density changes. Nonmonotonic response
of a drift velocity has also been demonstrated for systems

with quenched disorder �31�, but the origin of these phenom-
ena is different from those that underlie the results of Ref. �6�
and of Fig. 2, where the mechanisms involve the dynamics
of the medium.

Finally, we note that the saturation velocity is finite in all
of the models that we consider. This is to be contrasted with
systems with large numbers of forced particles, in which
their velocity may appear to vanish at large forces �6�. For
single forced particles, our results suggest that the saturation
velocity will be finite as long as the unbiased diffusion con-
stant is finite. �In KCMs with glass transitions at finite den-
sities �or temperatures� �32�, all particles are localized in the
glass phase: we expect D=0 and v�f�=0 for all f .�

IV. CONTINUOUS-TIME RANDOM WALK ANALYSIS

To further elucidate the mechanism for the nonmonotonic
responses described above, we use a continuous-time ran-
dom walk �CTRW� analysis �10�. We use the model of �11�,
which exploits the existence of two separate time scales in
glassy systems, corresponding to two different physical pro-
cesses: exchange and persistence events �11,12,14�. Re-
cently, Rubner and Heuer �15� analyzed how motion on an
underlying energy landscape can result in particle motion
that resembles a CTRW. Earlier applications of CTRWs to
glassy materials include trapping models such as �33�, and
mostly focused on the physical consequences of diverging
time scales. In the following, we will assume that all time
scales are finite, ensuring that we recover the physical limit
of simple diffusion at long times.

A. Theoretical framework

Consider a single probe particle, which makes a series of
uncorrelated steps through a fluctuating environment. The
force on the probe enters as a bias on the direction of these
steps. The probe’s environment is dynamically heteroge-
neous, with space-time permeated with entangled excitation
lines �7,12,26�. The probe moves only where it is intersected
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by these lines. In this way, the time between successive steps
acquires large fluctuations. We denote the distribution of
these times by ��t�, so that the distribution of time intervals
between a randomly selected initial time and the first step
made by a particle is �34�

p�t� =


t

�

dt���t��


0

�

dt�t���t��
. �5�

Following �7,12�, we refer to ��t� as the distribution of ex-
change times and p�t� as the distribution of persistence times.
The probability that the particle has made no steps between
time 0 and time t, the so-called “persistence” function, is

P�t� = 
t

�

dt�p�t�� . �6�

Now, let G�r , t� be the distribution of the position r of the
probe particle, given that it was at the origin a time t earlier.
The number of hops made by the probe in that time is ran-
domly distributed, so G�r , t� contains a contribution from
every possible number of hops. Since successive hops are
assumed to be independent, the Fourier-Laplace representa-
tion of the sum over these contributions has a closed form:

we define F̂�k ,s�=�0
�dt�ddrG�r , t�e−ik·r−st, and arrive at the

Montroll-Weiss equation �10,11�

F̂�k,s� = P̂�s� +
1 − �̂�s�

s

��k�

1 − �̂�s���k�
p̂�s� . �7�

The functions �̂�s�, P̂�s�, and p̂�s� are the Laplace transforms
of ��t�, P�t�, and p�t�, respectively. The function ��k� is the

generating function for the statistics of a single random walk
step, 	R,

��k� � e−ik·	R, �8�

where the overbar indicates an average over the possible val-
ues of 	R. For small wave vectors, ��k�=1− i�� ·k
− ��2 /2��k�2+O�k3�, where the invariance of the quadratic
term under rotation ensures that unforced diffusion is isotro-
pic, while in the presence of a force there is a nontrivial bias
�=	R /�. The length scale � would refer to a particle diam-
eter in continuous force models, and here refers to the lattice
spacing of our KCMs.

The behavior of the probe particle at long times is given

by the behavior of F̂�k ,s� at small k and s. We denote the
mean exchange and persistence times by �x and ��, respec-
tively �we identify the average persistence time of the probe
with the structural relaxation time �� of the embedding me-

dium �35��. From Eq. �5�, we have �̂�s�=1−s�xp̂�s�, and we

expand at small s, arriving at p̂�s�=1−s��+¯ and �̂�s�=1
−s�x+s2�x��+¯.

The drift velocity is then

v = lim
s→0

is2�kF̂��k,s��k=0 = ��/�x�� , �9�

where we used v=limt→� t−1�dr rG�r , t�. Physically, the
drift velocity is given by the product of the mean displace-
ment per hop, ��, and the mean hop frequency �x

−1.
Similarly, the asymptotic mean square fluctuation in the

probe displacement per unit time is given by

(b)

(a)

(c)

FIG. 4. �Color online� Sample mechanisms for reduced velocity at large forces. ��a� and �b�� Sketch of two trajectories in the FA model.
Excited sites, ni=1, are shown in gray �or brown�, the trajectory of the probe in black, and time evolves from left to right. �a� A probe moves
a single step on encountering an excitation line. �b� An excitation line can facilitate several hops for the probe, increasing its diffusion
constant. However, this mechanism requires steps in which the probe moves against the force, so it is suppressed for large forces. �c� A
sequence of four configurations that illustrate a cooperative move in the �2�-TLG. The probe �colored black� responds to the force by
eventually moving upwards, but this requires an initial step in which it moves downwards, against the force, to allow the neighboring
particles which are blocking it to move out of the way. Thus the response is again suppressed at large F.
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D�f� = �2d�−1 lim
t→�

t−1���r�t��2� − ��r�t���2�

= �2d�−1 lim
s→0

�− s�k
2 ln F̂��k,s��k=0 − ��v�2/s��

= �2d�x�−1��2 + 2���2�2����/�x� − 1�	 . �10�

Hence, the unforced diffusion constant is

D = D�0� =
�2

2d�x
. �11�

B. Effect of forcing

From Eq. �9�, we see that the probe drift velocity depends
on the bias � and the mean exchange time �x. These quanti-
ties depend upon the force. In one dimension, the local form
of detailed balance relates the probabilities for hopping to
left and right, and we have

� = tanh�f/2� . �12�

This result is independent of the function g�E� in Eq. �1�. In
d�1, the bias � is aligned with the force, as long as diffu-
sion in the unforced case is isotropic. The modulus of �
increases monotonically with the force, and has a large-f
limit 0�max�1.

The dependence of the mean exchange time �x on the
force manifests the response of the medium on the probe. In
the case of a ghost particle, there is no effect so that Eq. �9�
gives �in one dimension�

�v�f��ghost =
�

�x
�0� tanh�f/2� , �13�

where �x
�0� denotes the mean exchange time for the medium

in the absence of the forced probe particle. This drift velocity
follows the Einstein relation for small forces, while for larger
forces, it saturates at a limiting value of the order of v0. This
is illustrated for the d=1 FA model in Fig. 2�b�.

More generally, the forced particle does affect its sur-
roundings, and as discussed in Sec. III A and Fig. 4, applying
a large force to a probe particle tends to suppress the relax-
ation of the surrounding medium. In the language of the
CTRW, this local slowing down enters as an increase of the
mean exchange time.

In fact, Fig. 4�a� indicates that, for large forces in the FA
model, the probe typically makes only one step for each
excitation that it encounters. For this model, the results of
�7,12� indicate that �x

�0� is the typical time between encoun-
ters with the same excitation line, while �� is the typical time
between encounters with different excitation lines. Thus, if
the mechanism of Fig. 4�a� is dominating, we expect �x
���. However, for small forces, the back reaction of the
probe on the medium can be neglected and we expect �x
��x

�0�. To interpolate between these two limits, we combine
the rates for the two processes using the simple functional
form

1

�x
�

1 − ���
�x

�0� +
���
��

. �14�

�We choose this form for simplicity, noting that analyses
based on it are mostly qualitative, and do not depend on the
precise form used.� Using Eq. �14� in Eq. �9� we then obtain
�for d=1�,

v�f� � �2D/��tanh�f/2��1 −
�� − �x

�0�

��

tanh�f/2�� . �15�

The velocity v is nonmonotonic in f , with a maximum at f
=O�1�. This is the nonmonotonic behavior of the drift veloc-
ity observed in Fig. 2. The peak value v* scales with D while
the large-force limit of the velocity, vsat, scales with the in-
verse of ��. Thus we expect v* to scale with D, while vsat��

depends only weakly on temperature and density. Figure 5�a�
shows that the behavior of the fully coupled probe in the FA
model is consistent with this analysis. �We have rescaled by
the persistence time � of the excitations ni, which has the
same scaling as the mean persistence time of the probes ��

�7�.� Generalizing Eq. �15� to d�1 leads to a similar predic-
tion of nonmonotonic response; the scaling of the maximal
and saturation velocities is shown in Fig. 5�b� and the quali-
tative features are again consistent with the CTRW analysis.

C. Force-dependent fluctuations: Giant diffusivity

The analysis also allows us to estimate fluctuations
around the average path. In particular, Eqs. �10� and �12�
give the force-dependent diffusivity in d=1,

D�f� =
�2

2�x
�1 + 2 tanh2�f/2�� ��

�x
− 1�� . �16�

Equation �16� shows that increasing the force on the probe
particle increases the diffusivity. That is, it leads to larger
fluctuations around the average path. For d�1, the func-
tional form of D�f� depends on the relationship between the
force f and the bias �, but the qualitative picture remains the
same as in d=1. Moreover, the ratio �� /�x is related to the
Fickian length of �11� as follows:

�F � �D�� = �� ��

2d�x
�0� . �17�

In the deeply supercooled regime this length scale can be-
come large, �F�� �11�, and the diffusivity D�f� may in-
crease by orders of magnitude as the force is applied.

Figure 6�b� shows the increase of D�f� with force in the
FA model with ghost probes. Even at the mildly supercooled
conditions shown in the figure, the diffusivity increases by at
least an order of magnitude. A significantly smaller increase
is found for the case of fully coupled probes. The difference
between the two models arises because �x increases with
increasing force, Eq. �14�, so that the contribution of the
second term in Eq. �16� is suppressed.

As the relaxation slows in these systems, and fluctuations
grow, these nonlinear fluctuation effects become important
even at small forces. From Eq. �16�, we can identify the force
at which the corrections to the diffusivity become important
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as Fnl��kBT /�F�= �kBT /�D���. Again, the Fickian length
grows with decreasing temperature or increasing density, due
to the increasing decoupling between diffusion and structural
relaxation, and so Fnl decreases progressively as the system
becomes more supercooled. A similar criterion was proposed
in Ref. �4� for the onset of nonlinear effects on probe veloci-
ties, Fem��kBT /�Dtc�, where tc is a relaxation time beyond
which certain probability distributions converge to Gaussian
forms. The results of that paper also indicate a decrease of
the threshold force with decreasing temperature.

Finally, the intermittent motion of our forced particle
leads to a two-peaked structure in the distribution of the
probe displacement, as shown for the FA model in Fig. 6.

Similar distributions were observed in the atomistic simula-
tions of Ref. �4� and the experiments of Ref. �37�. They can
be interpreted in our dynamical facilitation picture �12,26� in
that the two peaks come from segregation of active popula-
tions and inactive populations. Indeed, to a good approxima-
tion �11,36�, Eq. �7� gives

G�x,t� � P�t���x� +
1 − P�t�

�4�tD�f�
exp�−

�x − tv�f��2

4tD�f� � ,

�18�

where x is the displacement in the direction of the force.
�Recall that the persistence function P�t� is the fraction of
probe particles that have not moved at all between time zero
and time t.� This equation for the distribution of probe dis-
placements shows how the decoupling of exchange and per-
sistence times in dynamically heterogeneous materials �12�
leads to bimodal distributions such as those of Fig. 6, and

(b)

(a)

FIG. 5. �Color online� Scaling of the response with temperature
and density. We plot rescaled transport coefficients as a function of
inverse temperature or chemical potential. �a� FA model: we show
the diffusion constant, the velocity at f =1 �close to the maximal
response v*� and the velocity at f =5 �close to the saturation veloc-
ity vsat�. To investigate the relative scalings of these quantities, we
normalize them all by the persistence time � �which varies by
around four orders of magnitude across this temperature range�. �b�
�2�-TLG, for a range of filling fractions 0.6���0.75. We normal-
ize by the structural relaxation time, which increases by a factor of
around 300 across this range of density. We define the chemical
potential for vacancies to be �, so that �= �1+e−
��−1 increases
from left to right. The maximal and saturation velocities are esti-
mated using f =3 and f =10, respectively.

(b)

(a)

FIG. 6. �Color online� �a� Distribution of the probe displacement
parallel to the force, G�x , t�, in the FA model at 
=5 with ghost
probes, showing a bimodal structure. The force is f =0.5 and the
times are given in terms of the persistence time �=1.15�106

Monte Carlo sweeps. At the earliest time, the peak at x=0 extends
beyond the top of the figure. �b� The force-dependent diffusivity
D�f� at 
=3 in the FA model, comparing ghost probes �triangles�
with fully coupled probes �squares�. The force increases the diffu-
sivity of the ghost probes. For the fully coupled probes, the mecha-
nisms responsible for the negative differential mobility also reduce
the diffusivity at large forces.
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hence to the large fluctuations of the sort that in other con-
texts have been termed “giant diffusivity” �37�.

V. OUTLOOK

We have shown in this paper that weak forcing of probe
particles in KCMs produces surprising nonlinear responses
such as negative differential mobility and giant diffusivity.
The origins of these nonlinear effects are the heterogeneity
�7,9� in the dynamics of the probe’s host fluid, the decou-
pling between local exchange and persistence times �7,12�,
and the consequent intermittency �7,11� in the motion of the
probe. These same mechanisms naturally give rise to trans-
port decoupling in the absence of external forcing �for ex-
ample, probe diffusion constants and structural relaxation
times have different scalings at low temperature �7��. In com-
parison with other theoretical treatments of transport decou-
pling �38�, ours seems distinguished by the unifying connec-
tions it elucidates between the broad distributions of
exchange and persistence times and various observed effects,
now including negative response.

All our results are for low-dimensional KCMs. We end
with a discussion of how they generalize to three dimen-
sions, and to atomistic or colloidal glass formers. In explain-
ing the fluctuation phenomena of Sec. IV C, we assumed
only that exchange and persistence times decouple from one
another. This effect occurs in three-dimensional KCMs in
which fluctuations are large �for example, variants of the KA
or TLG models�. It was also recently demonstrated in three-
dimensional atomistic glass formers �14�, and so we expect
giant diffusivity to be observed in those systems also. We
have discussed how the results of Sec. IV C connect to pre-

vious atomistic simulations �4�, and experiments would also
seem feasible �37�.

In addition to decoupling of exchange and persistence
times, negative differential mobility depends on a suppres-
sion of the local exchange time by the applied force, as dis-
cussed in Secs. III A and IV B. This feature seems to be
generic in KCMs, and so we again expect that it would gen-
eralize to three-dimensional KA and TLG models. However,
such a suppression of the exchange time has not yet been
observed in three-dimensional atomistic or colloidal systems:
we are not aware of experiments that probe the relevant re-
gime �recall Fig. 1�. As discussed in Ref. �2�, only the large
force regime is accessible using that system, since responses
below the threshold are smaller than the experimental reso-
lution limits. It seems that experiments with reduced forces
f �1 will require the development of new methods. How-
ever, searches for giant diffusivity and negative differential
mobility, in simulations of glass formers and in experiments,
would provide a further test of the extent to which simple
kinetically constrained models can be used to explain and
predict the peculiar transport properties of supercooled liq-
uids.
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